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Overview

= Agent capabilities

= Theory of the robot
— Sensing
— Thinking
— Acting

= QOccupational robotics
— Types
— Risks
— Ethics
— Economics

= Risk Management Decision Making



Decision Making Agents

= Decision Making Agent
— Entity that thinks and acts on observations of its environment
* Physical entities
—Humans
—Robots
* Non-physical entities

—Decision support systems implemented in software code
using Al computational methods



Agent Capabilities

= Humans have 3 major capabilities:

— Physical, Cognitive and Emotional

= Machines that can perform any of these 3 capabilities in physical

space are known as “robots.”
— Robot derives from Czech word “robota,” meaning forced labor
— R.U.R. (Rossum’s Universal Robots) is a 1920 play by Karel Capek

= Machines that can perform cognitive decision making through Al

are known as “intelligent assets.”

— Watson (IBM)
— AlphaGo (Google)



Theory of the Robot

= Model we use to describe how a robot works is as follows:
— The robot senses, the robot thinks, and the robot acts...

" How?
— Sensing is done through interpretation of data from environmental sensors.
— Thinking is done through the use of forms of artificial intelligence or Al.
— Acting is done through:
* Effectors for robots operating in physical space
* Decisions for intelligent assets operating in digital space



Sensing



Robotic Sensors

Perceptual Interface Between Robot and the Environment

Range finders
— Measure the distance to near objects

Location sensors
— GPS outdoors
— Location beacons indoors

Proprioceptive sensors
— Inform the robot of its own motions

Force sensors and torque sensors
— How hard robot is manipulating an object
— How fast robot is turning

— Al allows robot to measure force/torque in all 3 translational and 3 rotational
directions hundred times a second



Sensor Technology Is Expanding

* Enabling capabilities increasing exponentially
— Improvements in measurement science
— Readily available geographic and spatial information locators
— Miniaturization of sensing instruments

— Promising technical solutions increasing the quality, reliability, and economic
efficiency of technical products.

* Types of Sensors

— Placeables
* Ground, air, water environments
* |n-vehicle monitors

— Wearables
* Clothing
e Hard hats

— Implantables
* Ingested and transcutaneous



Internet of Things (loT )

OMO (online-merge-of-offline)

— Combining of our digital and physical worlds such that every object in our surrounding environment
will become an data input for the Internet

Sensors are at the heart of the Industrial Internet
— Deploying sensors, entire workplace and everyone in it become data input sources.
— Workplace sensors become intelligent assets operating in physical and virtual space.

— NIOSH Center for Direct Reading and Sensor Technology
https://www.cdc.gov/niosh/topics/drst/default.html

Sensor improvements can be easily uploaded to the cloud
— Immediate and universal sensor connectivity
— Universal sensor upgradability

Cloud-based sensor data inputs
— Occupational data analytics
— Use of Al to support risk decision making
— Occupational professional as data scientist


https://www.cdc.gov/niosh/topics/drst/default.html
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Marty Ellis, of Inman Mills in South Carolina, checks a machine manufacturing fabric developed through AFFOA.
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Artificial Intelligence

= Central idea

— You can represent reality by using a mathematical function that an algorithm
(stepwise procedure) does not know in advance, but which it can guess after
seeing some data, recursively accuracy of the probability guess.

= QOrigin
— 1956 Dartmouth College workshop computer scientists predicted that machines

that could reason as well as humans would require, at most, a generation to come
about. We think of this as “General Al

— They were wrong and several Al winters followed. And then in 2010s, Al exploded
because of the wide availability:

* GPUs that make parallel processing ever faster, cheaper, and more powerful
* Practically infinite storage capacity
* Flood of data (big data)



Homo Sapiens

Type Simulation Potential Human Tools

Description

Visual-Spatial Moderate Charts, graphs, @ modeling, video

Kinesthetic Moderate Specialized equipment—da Vinci
surgical device

Creative None New patterns of thought,
inventions, innovations

Interpersonal Low Any form of communication

Intrapersonal None Privacy, time, diaries, books

Linguistic Moderate Spoken words,books, games, voice
recorders

Logical/Mathematical High Logic games, mysteriesand brain
teasers

Mobile robots require this capacity, but
is proving difficult to simulate

Differentiate between human
augmentation and truly independent
moves

For Al to create, itvould have to
possess seHawareness

Computers can answeuestions
because of key word inputs

Human kind of intelligence only

Computers don’t separate writtenand
spoken linguistic like the human brain

When computer beats human at a
game—only form of intelligence
computer has



Machine Learning

= Machine learning at its most basic is the practice of using algorithms to parse
data, learn from it, and then make a determination or prediction about
something in the world.

= Machine is “trained” using large amounts of data (big data) and algorithms
that give it ability to learn how to perform the task more and more accurately

= Machine-learning technology powers many aspects of modern society:

— From web searches to content filtering on social networks to recommendations on e-
commerce websites; spoken language and computer vision

— Increasingly present in consumer products such as cameras and smartphones.



Machine Learning

= Symbolists

symbaolysts

— Rules from data, e.g., decision trees
= Connectionists*®

— Reproduce brain’s functions using silicon
instead of neurons using backpropagation Evolutionaries Connectionists

of errors. Machine

= Evolutionists

Learning

— Uses recursion to generate algorithms that
evolve.

= Bayesians*

— Learning occurs as continuous updating of
previous beliefs.

Analogizers Bayesians

= Analogizers

— Uses similarity to determine best solution
to a problem.




Deep Learning—Neural Networks

= Technique for building an algorithm that
learns from data. It is based very loosely on
how we think the human brain works. The dramatic rise of the term "deep learning” in research

— A collection of software “neurons” are
created and connected together, allowing
them to send messages to each other.

— The neural network is asked to solve a
problem, which it attempts to do over
and over, each time strengthening the
connections that lead to success and
diminishing those that lead to failure.




Neural Networks: Mimicking Human Thinking

= Learning in human brain occurs by modifications of synapses between neurons based
on stimuli received by trial and error experience.

= Neural networks provide a way to replicate this process
— Neural networks have different layers, each one having its own weights.
— Uses a mathematical method called backpropagation—correction—change weights.
— Backpropagation is at the core of the present Al renaissance.

= Here’s how:

— Units receive an example.

— If they don’t guess correctly, they retrace the problem in the system of existing weights using
backpropagation and fix it by changing the weights.

— This process goes on for many iterations before a neural network can learn.

= |terations are called epochs—network may need days or weeks of training to learn
complex tasks. Same as what a human does when performing a task using trial and
error.

= QOpen source framework at http://playground.tensorflow.org/



http://playground.tensorflow.org/
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Facial Expression Recognition Using Convolutional Neural Networks

Project Overview
Convolutional Neural Network Architecture:
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Still Confused?

Al

Big data

Machine learning
Supervised learning
Unsupervised learning
Reinforcement learning
Neural network

Deep supervised learning

— Hao K. MIT Tech Rev. Nov 17, 2018
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U.S. Government: Al Lockdown

= 0On 19 November, the U.S. Department of Commerce proposed new restrictions on the export of Al
technologies, including neural networks and deep learning, natural language processing, computer
vision, and expert systems. See https://www.gpo.gov/fdsys/pkg/FR-2018-11-19/pdf/2018-

25221 .pdf

= Representative Technology Categories

— Artificial intelligence (Al) and machine learning technology, such as:
* Neural networks and deep learning
* Computer vision (e.g., object recognition, image understanding);
* Expert systems (e.g., decision support systems, teaching systems);
* Speech and audio processing (e.g., speech recognition and production); and
* Natural language processing (e.g., machine translation).

— Al cloud technologies; and

— Quantum information and sensing technology (among others).


https://www.gpo.gov/fdsys/pkg/FR-2018-11-19/pdf/2018-25221.pdf

EXECUTIVE ORDERS

Executive Order on Maintaining
American Leadership in Artificial
Intelligence

—— INFRASTRUCTURE & TECHNOLOGY Issued on: February 11, 2019

* K K

= |nvesting in Al R&D
— Direct Federal agencies to prioritize Al investments in their R&D missions
= Unleashing Al resources

— Make Federal data, models, and computing resources more available to America’s Al R&D experts,
researchers, and industries.

= Setting Al governance standards

— Establish guidance for Al development and use across different types of technology and industrial sectors
= Building the Al workforce

— Promote STEM education
= International engagement and protecting our Al advantage

— Protect advantage against strategic competitors



Acting



Occupational Robotics
* Types:

— In physical space
* Manipulators (or robotic arms)
* Mobile robots
—Unmanned vehicles
» Ground
» Aerial
» Water

* Mobile manipulators
—Humanoid (mimic human torso)
— In digital space
* Intelligent decision making assets




Organizational Profile

Better at Routine Tasks
— Robot workers are simply better than people at precise and repetitive tasks

Better at Dangerous Tasks

— Venturing into dangerous environments
— Completing hazardous activities

Better at Managerial Tasks

— Remind a team of deadlines, procedures, and progress
» Keep perfect record of project progress
* Provide real-time scheduling and decision support
* Have perfect recall

Lower Operational Costs

— Costs barely $8 an hour to use a robot for spot welding in the auto industry,
compared to $25 for a worker—and the cost savings gap is only going to widen.



Commercial Types of Robots

Traditional Industrial robots

— Fixed in location
— Humans and robots are separated from each other

Collaborative robots

— Designed to work together with humans

Service robots

— Autonomous ground vehicles
— Unmanned aerial vehicles
— Household service robots

Social Robots

— Detect and express human emotion

— Act as companions

Wearable Robotics

— Exoskeletons




Traditional Industrial Robots

= Used since the 1970s in auto f}-
manufacturing industry !

= Safety measures that keep
human workers separated
from robot workers is
standard
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Collaborative Robots or Cobots

ROBOTICS

HEE




Collaborative Robots: Challenge
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Designed to work alongside human
workers.

Controlled by human workers, by an
algorithm, or by both.

Equipped with sensors designed to stop
robot when contact with human
worker occurs.

Grasping a previously unknown object,
one for which a 3-D model is not
available, is the biggest challenge.

— https://berkeleyautomation.github.io/dex-net/

Filling a bin with objects for the Dex-Net 4.0 robot grasping research. Credit: Adriel Olmos, UG Berkeley


https://berkeleyautomation.github.io/dex-net/

Service Robots

 Move alongside,
and in shared
space, with
human workers




Service Robots:
Autonomous Ground Vehicles

Service robots used by Rio Tinto in Pilbara,
Western Australia

— No coffee breaks, fatigue and driver
changeovers.

— Stops only once a day for refueling.

Autonomy enables drilling to run for almost a
third longer on average than with manned rigs,
and to churn through 10% more ground
meters/hour.

Engineers at Rio’s operations center in Perth (2
hours flight away) remotely control the trucks.

Workforce at the mine is already about
one-third lower as a result of autonomy of
the trucks.



Service Robots:
Truck Platoons

— With the following trucks braking
immediately, with zero reaction time,
platooning can improve traffic safety.

* Cost

— Platooning is also a cost-saver as the trucks
drive close together at a constant speed.
This means lower fuel consumption and
less CO2 emissions.

* Efficiency

— Platooning efficiently boosts traffic flows
thereby reducing tail-backs. Meanwhile the | DRIVERLESS TRUCKS:
short distance between vehicles means THE FUTURE IS HERE

less space taken up on the road. e




SDC Challenge: Computer Vision

You cannot write algorithms that anticipates every possible scenario a self-driving car might encounter.

That’s the value of deep learning; it can learn, adapt, and improve. Science is building an end-to-end

deep learning platform called NVIDIA DRIVE PX for self-driving cars — from the training system to the
in-car Al comouter.

Daimier was able to bring “the vehicle's environment Using a dataset from our partner Audi, NVIDIA engineers
perception a significant step closer to human performance and rapidly trained NVIDIA DriveNet to detect vehicles inan
exceed the performance of classic computer vision™ with extremely difficuit environment — snow.

NVIDIA DriveNet,



http://www.nvidia.com/object/drive-px.html

Narrative Definition

Human driver monitors the driving environment

No
Automation

Driver
Assistance

Partial
Automation

Automated driving system (“system™) monitors the driving environment _ _

Conditional
Automation

High
Automation

Full
Automation

the full-time performance by the human driver of all
aspects of the dynamic driving task, ewven when enhanced
by wamming or intervention systems

the driving mode-specific execution by a driver assistance
system of either steering or acceleration/deceleration using
information about the driving environment and with the
expectation that the human driver perform all remaining
aspacts of the dynamic driving task

the driving mode-specific execution by one or mora driver
assistance systems of both steering and acceleration/
deceleration using information about the driving
environment and with the expectation that the fiuman
driver perform all remaining aspects of the dynamic driving
fask

the driving mode-specific performance by an avtomated
driving systom of all aspects of the dynamic driving task
with the expectation that the human driver will respond
appropriately to a request to intervene

the driving mode-specific performance by an automated
driving system of all aspects of the dynamic driving task,
even if a human driver does not respond appropriately to a
request to infervene

the full-time performance by an automated diving system
of all aspects of the dynamic driving task under all roadway
and environmental conditions that can be managed by a
human driver

Fallback
Performance
of Dynamic
Driving Task

Execution of
Steering and
Acceleration/
Deceleration

System
Capability
(Driving
Modes)

Monitoring
of Driving
Environment

Human driver Human driver Human driver

n'a

Human driver
and system

Some driving

Human driver
modes

Human driver

Some driving

e modes

Human driver Human driver

Some driving

Human driver
modes

System System

Some driving

System
i modes

system

Systom j

System




Service Robots: UAVs

Military

ATTLE POLICE i;

Public Safety Commercial




UAVs Uses in Construction

Maintenance Hazardous Applications



Sources of Risk from UAVs

* Engineering

— Errors in the drone’s mechanics (e.g., loose connections across parts,
faulty electronics and sensors).

 Human

— Errors in programming, interfacing peripheral equipment, and
connecting input/output sensors resulting in unpredicted movement or
action by the drone;

— Errors in judgment resulting from “over-attributing” to autonomous
robots more human-like qualities and capabilities;

— Errors in remote operating.
* Environmental

— Unstable flying conditions, extreme temperature, poor sensing in
difficult weather or lightning conditions leading to incorrect response



Service Robot: 'Little Sunfish'
n ‘\'V

“

= When a tsunami devastated parts of
Japan's coastline in 2011, killing more
than 18,000 people, it also hit the
Fukushima Nuclear Power Plant,
triggering the most serious nuclear
accident since Chernobyl.

= Parts of the damaged reactors are still
highly contaminated with radiation
and robots are playing a crucial partin
the clean-up.




Social Robots

* Pepper is a humanoid robot by SoftBank Robotics

e Designed with the ability to read emotions. An emotional robot.

— Introduced on 5th June 2014 to enhance human well-being.
— Available at a base price of JPY 198,000 (51,931) at Softbank Robotics.

* Pepper's emotion comes from the ability to analyze expressions and voice tones.




Exoskeleton Robotlcs

* Mobile with the human and reduces
mechanical stress on wearer
— Rehabilitation for amputees
— Robotic-assisted surgery (da Vinci)

— Amplifies or transforms worker or warfighter
movements
* March or run longer with less fatigue
* Increase lifting capacity

* |ndustrial market projected to grow 229%
per year between 2016 and 2021

e Suit X, U.S. Bionics

* Winter Green Research, Inc. (2015). Wearable Robots,
Exoskeletons: Market Shares, Market Strategies, and Market
Forecasts, 2015 to 2021.
https://www.marketresearchreports.biz/reports/716060/wearabl
e-robots-industrial-exoskeletons-shares-market-research-
reports.pdf




Exoskeleton Challenge: Weight

= Make power source light enough to work at human scale.

= |n warehouses, a forklift truck typically weighs 1.6 to 2 times the intended weight to
be carried.
— For a 150 pound human worker intending to carry 200 additional pounds, that ratio
would put the human’s exoskeleton in the 650-pound range, unloaded, so that a
fully loaded package would weigh about 1,000 pounds--unacceptable.

= Lowering the battery weight is the quickest way to shrink the weight of the total
assembly—a great deal of battery power would be expended in simply carrying the
battery and a frame sufficiently robust to support the battery.

= Finally, training a human to leave part of the task to a machine, and not to overthink
the exoskeleton relationship will be a musculoskeletal safety challenge.



Ethics



Al Ethics: Playing the Probabilities

e Two cars sinking in the water
— Detective Del Spooner (Will Smith)
— Young girl, Sarah

* Robot could save only one of them, Spooner
yells “Save the girl!”

— Probability of survival for Spooner was 45%
— Probability of survival for Sarah was 11%

* Robot saved Spooner; girl drowned. R

ONE MAN SAW IT COMING

* Fleetwood, J. Public Health, Ethics, and Autonomous
Vehicles. Am J Pub Health. 2017; 107(4): 532-537



Mercedes-Benz Prioritizes Occupant Safety over Pedestrians

= Rather than tying itself into moral
and ethical knots in a crisis,
Mercedes-Benz simply intends to
program its self-driving cars to save
the people inside the car. Every
time.

= All of Mercedes-Benz’s future Level
4 and Level 5 autonomous cars will
prioritize saving the people they
carry, according to Christoph von
Hugo, the automaker’s manager of
driver assistance systems and active

safety.
— https://www.caranddriver.com/news/a15344706
/self-driving-mercedes-will-prioritize-occupant-
safety-over-pedestrians/



https://www.caranddriver.com/news/a15344706/self-driving-mercedes-will-prioritize-occupant-safety-over-pedestrians/

2 MORAL
& MACHINE

@En

Moral Machine - Human Perspectives on Machine Ethics

Welcome to the Moral Machine! A platform for gathering a human perspective on maral decisions made by machine intelligence, such as self-driving cars.

We show you moral dilemmas, where a driverless car must choose the lesser of two evils, such as killing two passengers or five pedestrians. As an outside observer, you judge
which outcome you think is more acceptable. You can then see how your responses compare with those of other people.

If you're feeling creative, you can also design your own scenarios, for you and other users to browse, share, and discuss.

Start Judging

Browse Scenarios

View Instructions




Economics
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Global Distribution

. . .
There are five maJ'Or Estimated worldwide annual shipments of industrial robots by
markets representing regions

74% of the total sales i
volume in 2016: China,
the Republic of Korea,
Japan, the United
States, and Germany.

200 191

161

150

000 of units

100

= Since 2013 China has
been the biggest robot
market in the world h

with a continued 2007 2009 2010 2011 2012 2013 2014 2015 2016
® Asia/Australia ®Europe ® Americas Source: FR Werld Roboloc s 2017

dynamic growth.



Robots and the Employment Effect:
The Case of Manufacturing



Job Density

In manufacturing, job density—
the number of jobs per
process—is declining.

In 1980 it took 25 jobs to
generate $1 million in

manufacturing output in the
U.S.

Today it takes five jobs.

Why?

US Real Manufacturing Output vs. Employment, 1947 to 2014
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Is it Technology or Trade?

* Technology (Automation)

— Erik Brynjolfsson, MIT Sloan School of Management
* Second Machine Age

e Trade (China)

— David Autor, MIT Department of Economics

* The China Syndrome: Local Labor Market Effects of Import Competition in the United States.
American Economic Review 2013, 103(6): 2121-2168.

e “Labor share-displacing effects of productivity growth, which were essentially
absent in the 1970s, have become more pronounced over time, and are most
substantial in the 2000s. This finding is consistent with automation having
become in recent decades less labor-augmenting and more labor-displacing.”

* Autor & Salomons, Is automation labor-displacing? Productivity growth, employment, and the labor share. BPEA
Conference Drafts, March 8-9, 2018
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Automation Prediction May Be Wrong

Cass, The Once and Future Worker, 2018

Magnifies current innovations while taking for granted equally
fundamental past innovations like steam, electricity, Internet.

Predictions ignore the gradual timeline on which transformations
usually occur. Deployment of new technology is always slow.

Technology often makes incremental improvements to a worker’s
productivity leading to higher quality output rather than to lower
demand for her work. Substitute versus complement. An abstract
description rarely captures the full complexity of any job.

Dire predictions ignore the positive. E-commerce is creating new
jobs faster than retail is destroying them.



Substitute or Complement?

" |In the workplace, robots can perform:
— A job that a human worker once did
* The robot acts as a substitute for a human worker.

—The robot can assist a human worker to perform a job
* The robot acts as a complement to a human worker.



Robot Risks



Industrial Robots: Safety Record

= Estimated 61 robot-related
deaths, 1992-2015, CFOI*

— Identified using keywords

= < 1% of more than 190,000
workplace injury deaths during
that timeframe**

*Unpublished analyses by NIOSH. Through a MOU with BLS, NIOSH receives Census of Fatal Occupational Injury (CFOI)
research files with restricted access requirements. Views expressed herein to not necessarily reflect the views of BLS.
** Data from publicly available CFOI data.



No. Injuries

Estimated3,730 Robot Injuries
in U.S., SOIl 20032016
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Ability to Identify and Track Injuries

= Refining keyword searches and methods

= Exploring ability to identify cases in
different databases

= Made recommendations to Bureau of
Labor Statistics for potential changes to
Occupational Injury and llinesses
Classification System



Recommendations to BLS

= BLS currently lacks a direct way to identify robotic systems in
machinery, motor vehicles, or industrial vehicles vs. label

= Solutions:

= Add a 5t digit to the source codes to denote robotic systems (or)

= Create a standalone variable for robotic systems
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Existing Guidance on Working Safely with Robots

Preventing the Injury of
Workers by Robots,
NIOSH Pub. No. 85-103

1740. Robots and
Robotic Equipment
Safe Maintenance Guidelines for Robotic

Workstations, NIOSH Pub. No. 88-108

OSHA Instructional Manual,
Chapter 4: Industrial Robots
and Robot System Safety

CDC
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ANSI/RIA Robotic Safety Standards

* ANSI/RIA R15.06-2012

AAMEETIA TR0 200T

— American National Standard for Industrial
Robots and Robot Systems- Safety
Requirements (revision of ANSI R15.06-1999)

* Approved March 28, 2013
* Revision underway

for industris! Robotz and Robat Systems —
Safety Requiraments

— Provides guidelines for the manufacture and
integration of industrial robots and robot

national

systems : g ==
i
* Emphasis on their safe use, the importance of risk i .
assessment and establishing personnel safety. . ia
* Key feature in the standard is “collaborative operation” PR

— Introduction of a worker to the loop of active interaction during
automatic robot operation.




- v
Center for Occupational Robotics Research

= NIOSH has been aware of an increase in the use of robotics in the workplace for a
number of years.

= NIOSH decided to focus research attention on understanding the aspects of robotics
that may affect human workers and the 215t century workplace.

= |n 2016, signed a Memorandum of Understanding between OSHA and Robotics
Industry Association.

= |n 2017, Established a Center for Occupational Robotics Research.



RESEARCH NEEDS

~
Robotics technologies
as preventive measures
and sources for
workplace hazards

-
Risks factors
contributing to robot-
related injuries

L _/

~ D ™
Methods and ' Strategies to
technlque_S for _ translate research
systematic collection, findings into
analysis, and practice
interpretation of data y




Contributing to Consensus Standards Setting

= ANSI/RIA R15.06 — Industrial Robots
and Robot Systems Safety (Update)

= ANSI/RIA R15.08 — Industrial Mobile
Robot Safety (New)

= ASTM F48 — Exoskeletons and Exosuits (New)

= ANSI/ASSP/NSC 715.3- Safety Management of Partially and Fully
Automated Vehicles (Technical report)

=  ANSI Unmanned Aircraft Systems Standardization Collaborative
Roadmap (Groundwork for consideration of a new standard)



Intelligent Assets



Theory of Intelligent Assets

Sensors - Data Stream
Thinking & Al Computation
Acting - Decision Support




Sensor Challenges and Questions

= Challenges
— Precision calibration and validation of sensor instruments
— Accuracy of sensor measurement outputs
— Correct hazard characterization

= Questions

— Given the vast amounts of sensor data that is expected to be generated,
how can such data be collected, analyzed, and interpreted by an
occupational data scientist without the use of Al computational methods?

— How can the occupational data scientist add value to sensor-generated, Al-
analyzed occupational exposure data?

— Is there a regulatory role?



Risk Management Model

= Risk Management Model
— ldentify risk events
— Asses probability of each risk event
— Make a cost-benefit analysis of each risk/probability event

— Manage risk according to enterprise’s risk appetite—elimination, reduction,
acceptance

= Model for Risk Management Uncertainty
— Known probabilities—exact to rough
— Unknown probabilities—a type of uncertainty
— “Unknown unknowns” —true uncertainty



Risk Decision Making: Can Al Help?

= Representing knowledge

— Representing knowledge in an uncertain domain

= Quantifying uncertainty
— Limited sensor observations
— Processing limitations
— Inherently stochastic

= Making decisions under uncertainty

— Bayesian networks as an Al computational method to reduce uncertainty
* Probabilistic Reasoning in Intelligent Systems (Pearl, 1988)
* Bayesian Reasoning and Machine Learning (Barber, 2012)
* Artificial Intelligence: A Modern Approach (Russell & Norvig, 2015)

= How much can Al eliminate uncertainty arising from risk decision making?
L eeee——



Al Safety Management

e Can Al be used to assist humans
in recognizing a near-miss?

* Can Al be used to assist humans
to offer more accurate risk
mitigation recommendations
than humans can alone?

* Can Al take control to prevent
human actions that may create
safety and health hazards?




"I'm sorry Dave, I'm afraid | can't do that"




.. Elements of Al (Sahct language '>

Welcome to the Elements of
Artificial Intelligence free online
course

* Do you wonder what Al really means? Other language versions are on the way!

* Are you thinking about the kind of impact Al Get notified when the language versions
might have on your job or life? are available
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