

Human Vibration

risks, limits, measurement and mitigation

Agenda

- 1:35 pm: Introduction to hand-arm and whole body vibration – Ken Cox
- 2:25 pm: Demystifying Noise Exposure Assessment: Top 7 Myths – Robert Vannice
- 3:10 pm: Vendor visits
- 3:40 pm: Introduction to EMF Exposure Assessments Robert Johnson
- 4:20 pm: Laser Safety: Incidents, Trends, and Emerging issues – Eric Lawson
- 5:00 pm: Exhibitor spotlight

Who Am I?

Ken Cox

- Larson Davis BDM
- 35+ years experience at LD
- Member IEC TC29 for 13 years

FAQS

?

Agenda

- 45 minute presentation
- 5 minutes for Q/A
- Is presentation available?
 - Yes

Vibration Exposure

Every day, human beings interact with machinery. Contact with vibrating machines is commonplace!

US Department of Defense (DOD)

In the U.S. alone, about 2.5 million workers are exposed daily to hand-arm vibration (HAV) from power tools they use on their job. Since 1918, it is documented that daily occupational exposure from many pneumatic, electric, hydraulic or gasoline powered vibrating hand-tools have been causally linked to HAVS. HAVS is an irreversible medical condition of the fingers/hands, which causes loss of sensation and blood supply to the hands and may cause loss of fingers. Because HAVS is often misdiagnosed, it is underreported. The documented workplace prevalence of HAV in the U.S. ranges from 20-50% for certain groups of power tool users. This is believed to be a conservative estimate. Even by conservative estimates, as many as 1.25 million power tool users may be at risk for developing HAVS.

Human Vibration - Classification

Whole Body Vibration

Hand-arm Vibration

Who is At Risk?

- Forestry workers
- Stone drillers, stone cutters, and chippers
- Quarry drillers
- Aircraft engine workers
- Farmers
- Sheet metal workers
- Polishers
- Oil rig workers
- Grinders
- Molders
- Maintenance and janitorial workers

- Welders
- Riveters
- Dental technicians
- Orthopedists
- Sewing machine operators
- Chainsaw operators
- Construction workers
- Pedestal grinder operators
- Auto / truck / bus mechanics and other users of impact tools
- Shipyard workers
- · Railway workers

What is Hazardous?

- Routine, long-term exposure to high vibration
- Occasional exposure is unlikely to be harmful
- Risk is higher for
 - People with medical condition such as Reynaud's disease
 - Workers in cold environments

Time to Injury

Figure C.1 — Vibration exposure for predicted 10 % prevalence of vibration-induced white finger in a group of exposed persons *From ANSI S2.70-2006 and ISO 5349

What is HAVS?

Hand-Arm Vibration Syndrome is a general term used to describe the physical damage to the hand, fingers, and related structures resulting from chronic exposure to excessive vibration.

White Finger Syndrome Raynaud's Phenomenon

- Results in poor blood circulation in fingers
- Symptoms include:
 - Cold fingers
 - Tingling or numbness
 - Blanching or whitening of fingers
 - Can lead to permanent damage

HAVS Limits

Vibration exposure	TLV	Action Level
time (hrs)	(m/s²)	(m/s²)
8	5.00	2.50
6	5.77	2.89
4	7.07	3.54
2	10.00	5.00
1	14.14	7.07

Maximum allowable level for 8 hr avg. exposure:

- EU Directive TLV: 5 m/s²
- EU Directive AL: 2.5 m/s²

Whole Body Vibration Effects?

- Lumbar spinal disorders
 - Lower back pain
- Digestive problems
- Urinary problems

Whole Body Limits

Vibration exposure time (hrs)	TLV (m/s²)	Action Level (m/s²)
8	1.15	0.50
6	1.33	0.58
4	1.63	0.71
2	2.30	1.00
1	3.25	1.41

Maximum allowable level for 8 hr avg. exposure:

- EU Directive TLV: 1.15 m/s²
- EU Directive AL: 0.5 m/s²

ACGIH HandArmVibration_2018-10-24.pdf and ANSI S2.70 (2006)

Standards

What to Do?

A. Identify areas of concern

- Power tools in use and/or medical diagnosis of injury
- Workers report tingling or "pins and needles" feeling
- Documented case HAV syndrome

B. Determine exposure

- Measure
- Model

C. Control the risk

- Limit exposure time
- Lower vibration levels
- Keep workspace warm
- Vibration isolation like gloves

Assessment Questions?

- Does your business use hand-held, hand-guided or hand-fed powered equipment?
- Using rotary action tools (e.g. grinders, polishers)?
- Using impact or percussive tools (i.e. hammer-action tools)?
- Manufacturers or suppliers warn of a risk from vibration?
- Tools cause tingling or numbress in the hands during or after use?
- Workers have reported symptoms of hand-arm vibration syndrome?

Modeling Vibration Exposure

Use of pre-determined tool vibration data

Benefits

- Informed buying choice
- Easy
- Low cost

Challenges

- Lack of data
- Inaccurate
- Not representative of actual conditions

Reference Measurements

Standards for measuring tool vibration

- ISO 28927-1: Angle and vertical grinders
- ISO 28927-2: Wrenches, nutrunners, and screwdrivers
- ISO 28927-3: polishers and rotary, orbital, and random orbital sanders
- ISO 28927-4: Straight Grinders
- ISO 28927-5: Drills and impact drills
- ISO 28927-6: Rammers
- ISO 28927-7: Nibblers and shears
- ISO 28927-8: Saws, polishing, and filing machines with reciprocating action
- ISO 28927-9: Scaling hammers and needle scalers
- ISO 28927-10: Percussive drills, hammers, and breakers
- ISO 28927-11: Stone hammers
- ISO 28927-12: Die grinders
- ISO 28927-13: Fastener driving tools

Reference Measurement Examples

Measurement Variation

CEN/TR 15350 advises that for estimating risk, the manufacturer's declared emission value should in most cases be multiplied by a factor depending on the type of tool:

- Pneumatic tools: ×1.5 to ×2
- Electric tools: ×1.5 to ×2

HSE Modeling Spreadsheet

Φ										lune 2005	
HSE Health & Safety Executive	Vibration magnitude	Exposure points	Time to r 2.5 m/	each EAV s ² A (8)	Time to r 5 m/s	each ELV A (8)		Expo dura	osure ntion	Partial exposure	Partial exposure
_	m/s- r.m.s.	per nour	nours	minutes	nours	minutes	P	nours	minutes	m/s ⁻ A (0)	points
Tool or process 1	5.4	58	1	43	6	52		1	15	2.1	73
Tool or process 2	7.3	107	0	56	3	45		0	20	1.5	36
Tool or process 3	2.6	14	7	24	>24			3	5	1.6	42
Tool or process 4	1.3	3	>24		>24			2	15	0.7	8
Tool or process 5											
Tool or process 6											
Instructions for use	9:									Daily	Total
										exposure	exposure
Enter vibration mag	gnitudes and exp	osure duratio	ns in the wh	ite areas.						m/s² A (8)	points
To calculate, press	the Enter key,	or move th <u>e</u> c	ursor to a di	fferent ce <u>ll.</u>						3.1	158
The results are dis	played in the yel	llow areas.									
To clear all cells, click on the 'Reset' button.									Reset		
For more information	on, click the HEL	P tab below.									Reset

Measuring Vibration Exposure

Benefits

- More accurate
- Improved risk assessment

Challenges

- More expensive
- Measurement sometimes difficult

Natural Frequency

The frequency range of 0.5 Hz to 80 Hz is significant

- Individual body members and organs have their own resonant frequencies
- This causes amplification or attenuation of vibration by certain parts of the body due to their own resonance
- The most damaging frequencies for vertical vibration are between 4 and 8 Hz

Frequency Weighting (Hand-Arm)

Designation	Description	Definition
W _h	Hand arm vibration (all)	ISO 8041, ISO 5349-1, ANSI S2.70

Frequency Weighting (Whole Body)

Designation	Description
Wb	z-axis vertical vibration
Wc	x-axis, seat back
Wd	x-axis & y-axis, seat surface
We	rotational seat surface
Wf	Motion sickness (vertical)
Wj	vertical recumbent
Wk	z-axis, seat surface
Wm	Vibration in buildings

Example Measurement System

The Larson Davis HVM200 is an instrument designed for measurement of human exposure to vibration

- Complete with instrument, sensor, & software
- Control using app and Wi-Fi

Adapters and Accessories

A variety of adapters and accessories for attaching the HVM200 and sensors are available

What is Measured?

Acceleration = the rate of change for speed or velocity

Accelerometer = used to measure acceleration Units = m/s^2

What is Triaxial?

Measure in three dimensions commonly labelled x, y, and z.

Like height, width, & depth.

•
$$Sum = \sqrt{x^2 + y^2 + z^2}$$

Left Handed Coordinates

Right Handed Coordinates

What are the Metrics?

- A_{rms} = rms or "average"
- A(8) = acceleration normalized to 8 hours
- VDV = Vibration Dose Value Emphasizes impulses
- Exposure time

H	VM 7200	T 00:00:23 100%								
			C)vera	all					
арме										
aRMS										
		RMS 1	6.3	88() m _{/s}	s² / Pł	(10			
		3.0325				5.7	119			
			Öv	erall '	"/ _{S²}					
		a _{RMS}	ape	AK	ê	aMIN	MTVV			
	х	1.4300) 11.0)58	0.	.0155	2.8030			
	У	4.7581	28.2	256	0.0196		8.8235			
	Z S	4.0153	21.4	139	0.0110		11 590			
	2	0.3000	29.1	41	0.	.0290	11.309			
			Overall	Hand/	Arm	m/ _{S²}				
		A(1)	A(2)	A(4)	A(8)	A(8) Exp(h)			
	x	0.1143	0.0808	0.05	572 0.0404		>24			
	у	0.3803	0.2689	0.19	902	0.1345	8.8341			
		0.3209	0.2269	0.16	605	0.1135	12.405			
	Σ	0.5106	0.3610	0.25	553	0.1805	4.9011			
	1									
			2) "()) /			
						~				
		Star	ted: 202	0-02	-24	11:14:	54			

Arms & Apeak

- RMS = Root Mean Square
- Arms commonly used to express vibration magnitude
- RMS level is the constant level that will produce the same amount of energy as the time variant signal
- Not the same as an average

Crest Factor

- Ratio of Apeak to Arms
- A measure of impulsivity
- For sinusoids, CF=1.41

Amax (MTVV)

- Maximum time weighted level
 - Time weighting = 1s exponential
- Alternative to Apeak for expression of maximum vibration

Amin

- Minimum time weighted level from beginning of measurement period
 - Time weighting = 1s exponential

$$L_{a\tau} = \sqrt{\int_{-\infty}^{t} a^2(\xi) \bullet e^{-(t-\xi)} d\xi}$$

A(1), A(2), A(4), A(8) for Hand-arm Vibration

A(8) = daily vibration exposure

"a continuous equivalent normalized to 8 hours"

- A(8) measurement can be compared same 8 hour time basis
- Combines time and vibration
- Penalizes exposure > 8 hours
- A(8) measurements can be easily combined

A(8) Hand-arm Example

A worker uses three tools each day

ΤοοΙ	A _{rms} (m/s²)	Exposure (hours)
Angle grinder	3.5	3
Cutting saw	2.5	1
Chipping hammer	18	1/3 (20 min)

Partial vibration exposures :

$$A(8)_{grinder} = 3.5\sqrt{\frac{3}{8}} = 2.14m/s^2$$

 $A(8)_{saw} = 2.5\sqrt{\frac{1}{8}} = 0.88m/s^2$
 $A(8)_{chipper} = 18\sqrt{\frac{.33}{8}} = 3.66m/s^2$

Daily vibration exposure :

$$A(8) = \sqrt{A_{grinder}^2 + A_{saw}^2 + A_{chipper}^2}$$

$$A(8) = \sqrt{2.14^2 + 0.88^2 + 3.66^2}$$

$$A(8) = \sqrt{4.58 + 0.77 + 13.40}$$

$$A(8) = \sqrt{18.75} = 4.33m/s^2$$

A(8) Act and Exp for Hand-arm Vibration

A(8) Act is elapsed time until A(8) = Exposure Action Level A(8) Exp is elapsed time until A(8) = Exposure Limit Level

- Used to determine how long a worker can continue with the same activity before reaching a
 predefined limit level
- HVM200 shows "> 24 hours" for periods longer than 1 day
- Default Action Level = 2.5 m/s²
- Default Exposure Limit Level = 5.0 m/s²

A(8) for Whole Body Vibration

A(8) = daily vibration exposure

"a continuous equivalent normalized to 8 hours"

- A(8) measurement can be compared, same 8 hour time basis
- Combines time and vibration
- Penalizes exposure > 8 hours
- A(8) measurements can be easily combined

$$A(8) = \max(a_{x,rms}, a_{y,rms}, a_{z,rms}) \sqrt{\frac{T}{8}}$$

Where:

T =exposure time (hours)

A(8) Whole Body Example

A worker uses two devices each day

Tool	A _{x,rms} (m/s²)	A _{y,rms} (m/s²)	A _{z,rms} (m/s²)	Exposure (hours)	
Forklift	0.5	0.3	0.9	1	
Truck	0.2	0.2	0.4	6	

Daily vibration exposure :

$$A_{x}(8) = \sqrt{A(8)_{x,forklift}^{2} + A(8)_{x,truck}^{2}} = \sqrt{0.25^{2} + 0.24^{2}} = 0.35m/s^{2}$$

$$A_{y}(8) = \sqrt{A(8)_{y,forklift}^{2} + A(8)_{y,truck}^{2}} = \sqrt{0.15^{2} + 0.24^{2}} = 0.28m/s^{2}$$

$$A_{z}(8) = \sqrt{A(8)_{z,forklift}^{2} + A(8)_{z,truck}^{2}} = \sqrt{0.32^{2} + 0.35^{2}} = 0.47m/s^{2}$$

$$A(8) = \max(A_{x}(8), A_{y}(8), A_{z}(8)) = \max(0.35, 0.28, 0.47) = 0.47m/s^{2}$$

Partial vibration exposures : $A_{x, forklift}(8) = 1.4 \bullet 0.5 \sqrt{\frac{1}{8}} = 0.25 m / s^2$ $A_{y,forklift}(8) = 1.4 \bullet 0.3 \sqrt{\frac{1}{8}} = 0.15 m / s^{2}$ $A_{z,forklift}(8) = 0.9 \sqrt{\frac{1}{8}} = 0.32 m / s^{2}$ $A_{x,truck}(8) = 1.4 \cdot 0.2 \sqrt{\frac{6}{8}} = 0.24 m / s^2$ $A_{y,truck}(8) = 1.4 \bullet 0.2 \sqrt{\frac{6}{8}} = 0.24 m / s^2$ $A_{z,truck}(8) = 0.4\sqrt{\frac{6}{8}} = 0.35m/s^2$ $A(8) = k \bullet a_{rms} \sqrt{\frac{T}{2}}$

A(8) Act & Exp for Whole Body Vibration

A(8) Act is elapsed time until A(8) = Exposure Action Level A(8) Exp is elapsed time until A(8) = Exposure Limit Level

- Used to determine how long a worker can continue with the same activity before reaching a
 predefined limit level
- HVM200 shows "> 24 hours" for periods longer than 1 day
- Default Action Level = 0.5 m/s²
- Default Exposure Limit Level = 1.15 m/s²

VDV

Vibration Dose Value

Exposure to intermittent WBV including shocks or jolts is measured using a VDV, which gives a more representative value than the daily vibration exposure A(8).

- VDV Exposure Action Level = 9.1 m/s^{1.75}
- VDV Exposure Limit Level = 21 m/s^{1.75}
- Cumulative metric, not normalized

$$VDV = \left\{\int_{0}^{T} a(t)^{4} dt\right\}^{\frac{1}{4}}$$

$$a_{rms} = \sqrt{\frac{1}{T} \bullet \int_{0}^{T} a(t)^{2} dt}$$

VDV with a Pulse

VDV Example – Part 1

A worker uses two devices each day

	Forklift	Truck
VDV _x (m/s ^{1.75})	0.5	0.2
VDV _y (m/s ^{1.75})	0.3	0.2
VDV _z (m/s ^{1.75})	0.9	0.4
Msrmnt time (hrs)	1	1
Duration (hrs)	1	6

Partial VDV exposure formulas :

$$VDV_{exp,x} = 1.4 \bullet VDV_x \left(\frac{T_{exposure}}{T_{measured}}\right)^{1/4}$$

 $VDV_{exp,y} = 1.4 \bullet VDV_y \left(\frac{T_{exposure}}{T_{measured}}\right)^{1/4}$
 $VDV_{exp,z} = VDV_z \left(\frac{T_{exposure}}{T_{measured}}\right)^{1/4}$
Where :
 $T_{exposure}$ = Daily duration of exposure
 $T_{measured}$ = VDV measurement period

Partial VDV exposures :

$$VDV_{exp,x, forklift} = 1.4 \cdot 0.5 \left(\frac{1}{1}\right)^{1/4} = 0.70 m / s^{1.75}$$

 $VDV_{exp,y, forklift} = 1.4 \cdot 0.3 \left(\frac{1}{1}\right)^{1/4} = 0.42 m / s^{1.75}$
 $VDV_{exp,z, forklift} = 0.9 \left(\frac{1}{1}\right)^{1/4} = 0.90 m / s^{1.75}$
 $VDV_{exp,x, truck} = 1.4 \cdot 0.2 \left(\frac{6}{1}\right)^{1/4} = 0.44 m / s^{1.75}$
 $VDV_{exp,y, truck} = 1.4 \cdot 0.2 \left(\frac{6}{1}\right)^{1/4} = 0.44 m / s^{1.75}$
 $VDV_{exp,y, truck} = 0.4 \left(\frac{6}{1}\right)^{1/4} = 0.63 m / s^{1.75}$

VDV Example – Part 2

A worker uses two devices each day

	Forklift	Truck
VDV _x (m/s ^{1.75})	0.5	0.2
VDV _y (m/s ^{1.75})	0.3	0.2
VDV _z (m/s ^{1.75})	0.9	0.4
Msrmnt time (hrs)	1	1
Duration (hrs)	1	6

Daily VDV exposure : $VDV_x = (0.70^4 + 0.44^4)^{1/4} = 0.73m/s^{1.75}$ $VDV_y = (0.42^4 + 0.44^4)^{1/4} = 0.61m/s^{1.75}$ $VDV_z = (0.90^4 + 0.63^4)^{1/4} = 0.95m/s^{1.75}$ $VDV = \max(0.73, 0.61, 0.95) = 0.95m/s^{1.75}$

Daily VDV exposure formula :

$$VDV_x = (VDV_{exp,x1}^4 + VDV_{exp,x2}^4 + VDV_{exp,x3}^4 + ...)^{1/4} m/s^{1.75}$$

 $VDV_y = (VDV_{exp,y1}^4 + VDV_{exp,y2}^4 + VDV_{exp,y3}^4 + ...)^{1/4} m/s^{1.75}$
 $VDV_z = (VDV_{exp,z1}^4 + VDV_{exp,z2}^4 + VDV_{exp,z3}^4 + ...)^{1/4} m/s^{17.5}$

Exposure Points (Hand-arm)

"Points" = alternate method that involves simpler math

How to do "points" for hand-arm vibration

1) Convert a_{rms} to points/hour for each tool $P_{E,hav,1h} = 2a_{hav}^2$

- 2) Multiply points/hour by hours of exposure
- 3) Add up the points

4) Done!

Exposure action level $(2.5 \text{ m/s}^2) = 100 \text{ points}$ Exposure limit level $(5.0 \text{ m/s}^2) = 400 \text{ points}$

Points general formula : $P_{E,hav} = \left(\frac{a_{hav}}{2.5m/s^2}\right)^2 \frac{T}{8hours} 100$ *Where* : T = Exposure time (hours)

$$A(8) = 2.5m / s^2 \sqrt{\frac{P_E}{100}}$$

Exposure Points Example (Hand-arm)

ΤοοΙ	A _{rms} (m/s²)	$P_{E,1h}$	Exposure (hours)	P _E
Angle grinder	3.5	24.5	3	73.5
Cutting saw	2.5	12.5	1	12.5
Chipping hammer	18	648	1/3 (20 min)	213.8
TOTAL POINTS				299.8

$$P_{E,grinder,1h} = 2 \bullet 3.5^2 = 2 \bullet 12.25 = 24.5$$
$$P_{E,saw,1h} = 2 \bullet 2.5^2 = 2 \bullet 6.25 = 12.5$$
$$P_{E,hammer,1h} = 2 \bullet 18^2 = 2 \bullet 324 = 648$$

$$P_{E,grinder} = 24.5 \bullet 3 = 73.5$$
$$P_{E,saw} = 12.5 \bullet 1 = 12.5$$
$$P_{E,hammer} = 648 \bullet 0.33 = 213.8$$

Exposure Points (Whole Body)

"Points" = alternate method that involves simpler math

How to do "points" for whole body vibration 1) Convert a_{rms} to points/hour for each tool $P_{E,wbv,1h} = 50(k \bullet a_{wbv})^2$

- 2) Multiply points/hour by hours of exposure
- 3) Add up the points
- 4) Done!

Exposure action level $(0.5 \text{ m/s}^2) = 100 \text{ points}$ Exposure limit level $(1.15 \text{ m/s}^2) = 529 \text{ points}$

Points general formula : $P_E = \left(\frac{k \bullet a_w}{0.5m/s^2}\right)^2 \frac{T}{8hours} 100$ Where: T = exposure time (hours) $A(8) = 0.5m/s^2 \sqrt{\frac{P_E}{100}}$

Exposure Points Example (Whole Body)

Tool	A _{x,rms} (m/s ²)	A _{y,rms} (m/s ²)	A _{z,rms} (m/s ²)	P _{Ex,1h}	P _{Ey,1h}	$P_{Ez,1h}$	Exposure (hrs)	P _{Ex}	P _{Ey}	P _{Ez}
Forklift	0.5	0.3	0.9	24.5	8.8	40.5	1	24.5	8.8	40.5
Truck	0.2	0.2	0.4	3.9	3.9	8.0	6	23.5	23.5	48.0
subtotal								48.0	32.3	88.5
TOTAL										88.5

$$P_{Ex, forklift, 1h} = 50 \bullet (1.4 \bullet 0.5)^2 = 50 \bullet 0.7^2 = 24.5$$

$$P_{Ey, forklift, 1h} = 50 \bullet (1.4 \bullet 0.3)^2 = 50 \bullet 0.4^2 = 8.8$$

$$P_{Ez, forklift, 1h} = 50 \bullet (0.9)^2 = 50 \bullet 0.81 = 40.5$$

$$P_{Ex, truck, 1h} = 50 \bullet (1.4 \bullet 0.2)^2 = 50 \bullet 0.3^2 = 3.9$$

$$P_{Ey, truck, 1h} = 50 \bullet (1.4 \bullet 0.2)^2 = 50 \bullet 0.3^2 = 3.9$$

$$P_{Ez, truck, 1h} = 50 \bullet (0.4)^2 = 50 \bullet 0.16 = 8$$

Trading Time for Exposure

Figure A.1 — Plots of the a_{hv(DEAV)} and a_{hv(DELV)} values for vibration exposure times other than 8 hours

Sample Data

	Х	У	Z	Sum	Units
a _{RMS}	0.5308	0.0453	0.2576	0.5918	m/s²
MTVV	0.7506	0.0546	0.3603	0.8344	m/s²
a _{PEAK}	2.6416	0.2351	1.2674	2.9392	m/s²
a _{MIN}	0.4681	0.0357	0.2248	0.5205	m/s²
A(1)	0.0177	0.0015	0.0086	0.0197	m/s²
A(2)	0.0125	0.0011	0.0061	0.0139	m/s²
A(4)	0.0088	0.0008	0.0043	0.0099	m/s²
A(8)	0.0063	0.0005	0.0030	0.0070	m/s²
A(8) Action	>24	>24	>24	>24	hours
A(8) Exposure	>24	>24	>24	>24	hours
Exposure Points				0	Points

What to Do?

A. Identify areas of concern

- Power tools in use and/or medical diagnosis of injury
- Workers report tingling or "pins and needles" feeling
- Documented case HAV syndrome

B. Determine exposure

- Measure
- Model

C. Control the risk

- Limit exposure time
- Lower vibration levels
- Keep workspace warm
- Vibration isolation like gloves

Administrative Controls

If vibration levels too high:

- Rotate workers on high vibration tool
- Break work into multiple shifts

Figure A.1 — Plots of the $a_{hv(DEAV)}$ and $a_{hv(DELV)}$ values for vibration exposure times other than 8 hours

Engineering Controls

If vibration levels too high

- Training on proper use of tool
- Ensure tool properly maintained
- Replace tool with model producing less vibration
- Use vibration isolation like gloves

Example Whole Body – Forklift Surface

Example Hand-Arm Tool Usage

Breaking Large Rocks/Stone

Breaking Small Rocks/Stone

Example Hand-Arm Tool Usage

Example Hand-Arm Worker Experience

Worker with experience

Inexperienced worker

Example Hand-Arm Worker Experience

