Occupational Exposure Limits The Global Landscape

Chris Laszcz-Davis, MS, CIH, REP, AIHA Fellow The Environmental Quality Organization, LLC

Collaborator: Jimmy Perkins, PhD, CIH, AIHA Fellow University of Texas, San Antonio, TX

California Industrial Hygiene Council Conference December 3, 2014 San Diego, CA

Presentation Highlights

Historical Evolution
OEL Setting Processes Today

Traditional, threshold approach
Newer ideas
Risk based
Band based

Global Evolution

- Pre 1900
- Early 1900s
- 1940s-1970s
- Post 1970s

Today's OEL Processes

 US Environment (1920s start) -1927 Walsh Healey Act -1946 ACGIH -1971 OSHA -1971 NIOSH -1984 AIHA -State Level Efforts

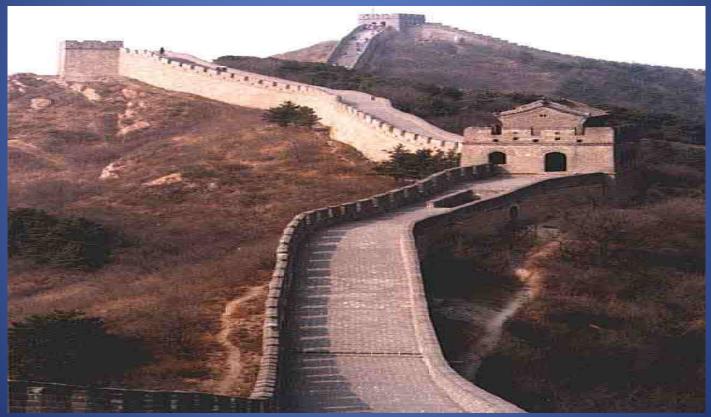
Today's OEL Processes

European Union

- –ACGIH TLVs a starting point
- -SCOEL (Scientific Committee on OELs)
- Individual country efforts...eg UK
 - Control of Substances Hazardous to Health Regulations (COSHH) from 1988

1980-2005, annual update, ~ 500 WELs

Since 2005, new WELS-implement IOELVs
 – 2007 REACh


REACh

EU effort

- 2007 Regulation on Registration Evaluation & Control of Chemicals (REACh)
- Prescribed DNELs
- Include EH&S risks
- Lower than traditional OELs

China's OEL Development

Great Wall

China's OEL Process

- 1950s, Republic of China published first exposure standards.
- 1990s, Emphasis on Occupational Disease Prevention
- Today, 339 Conservative Compulsory OELs
- Today, Health is Primary Consideration
- Today, Strive for Economic & Technological Feasibility

Comparison: China's OELs, TLVs and WELs

Hazardous Agents	China's OEL PC-TWA (mg/m ³)		ACGIHTLV TWA (mg/m ³)	UK OEL TWA (mg/m³)
Methanol	25		262	266
Lead, fume & dust	0.03, fume 0.05, dust		0.05	0.15
n-Hexane	100		176	72
Dimethylformamide	20		29.9	15
Crystalline Silica/ Quartz (respirable)	10%≤free SiO ₂ ≤50%	0.7		0.1
	50% <free SiO₂≤80%</free 	0.3	0.025	
	free SiO ₂ >80%	0.2		
Noise (8hr per day)	85dbA		85dbA	85dbA

Democratic Republic of India

India's OEL Processes

- Safety Focus and Huge Unorganized Workforce
- Lack of Occupational Disease Data
- Meager Spending on Public Health
- No Coherent National Policy
- 1948 Factories Act, Permissible Limits of Exposure of Chemical and Toxic Substance

India's Permissible Limits of Exposure

Substance (mg/m3)	ACGIH	UK OEL	INDIA
Asbestos	0.1 f/cc	0.1 f/cc	0.1 f/cc
Benzene	1.6	3.25	1.5
Beryllium	0.002	0.002	0.002
Carbon Monoxide	28	35	55
Hexavalent Cr (Sol)	0.05	0.05	0.05
Hexavalent Cr (Insol)	0.01		0.05
Manganese fume	0.2	0.5	1.0
Total Dust	10	10	10
Vinyl Chloride	2.5	7.8	10

Latin America Overview

Source: 1BGE Statistics; 2Citibank

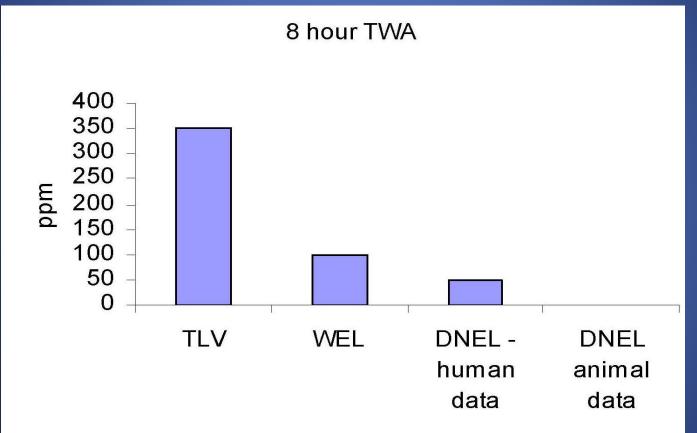
1400km

IBGE - 2005

Latin America General Information

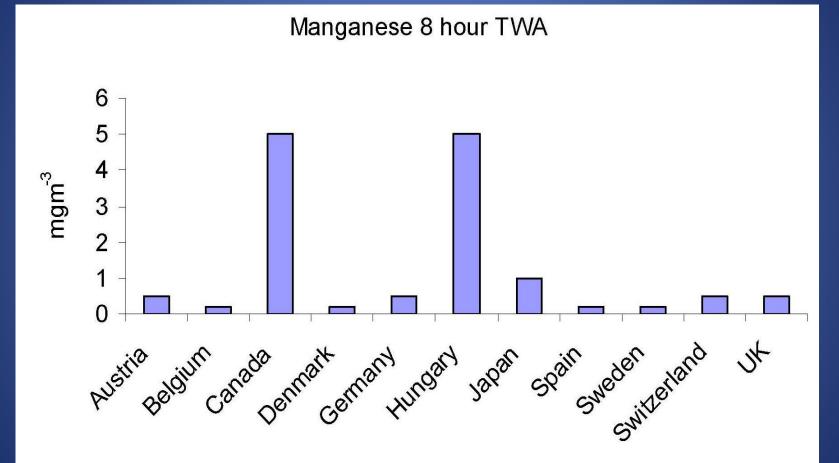
Official Language: Spanish and Portuguese most spoken

Number of Countries: 43


Social Inequality is a major roadblock. 25% of the population lives with less than \$2 / day.

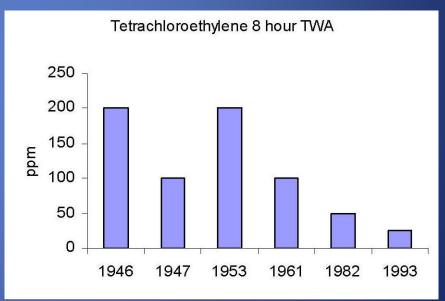
Brazil leading country economically, followed by Mexico, Argentina and Colombia

Latin American Countries


COUNTRY	EXPOSURE LIMITS	DATE
BRAZIL	ACGIH	ACTUAL
ARGENTINA	ACGIH	ACTUAL
CHILE	ACGIH	ACTUAL
COLOMBIA	ACGIH	ACTUAL
MEXICO	ACGIH	1998
VENEZUELA	ACGIH	2001 (Under review)

Derivation of DNELs: 1,1,1 Trichloroethane

Source: Alison Searl, PhD, Director of Analytical Services, IOM Consulting, *Some Current Approaches to OEL Setting in the EU*, BOHS, Occupational Hygiene Conference, Thistle Hotel, Bristol, 2008.


Various OELs for Manganese

Source: Alison Searl, PhD, Director of Analytical Services, IOM Consulting, *Some Current Approaches* to OEL Setting in the EU, BOHS, Occupational Hygiene Conference, Thistle Hotel, Bristol, 2008.

ACGIH Threshold Limit Values

Source: Alison Searl, PhD, Director of Analytical Services, IOM Consulting, *Some Current Approaches to* OEL *Setting in the EU*, BOHS, Occupational Hygiene Conference, Thistle Hotel, Bristol, 2008.

OEL Global Challenges

- # of chemicals in commerce
- OELs not well understood
- New emphasis--full cycle risks
- Not everyone values OELs
- Basic data--quality & reliability
- Resources and expertise

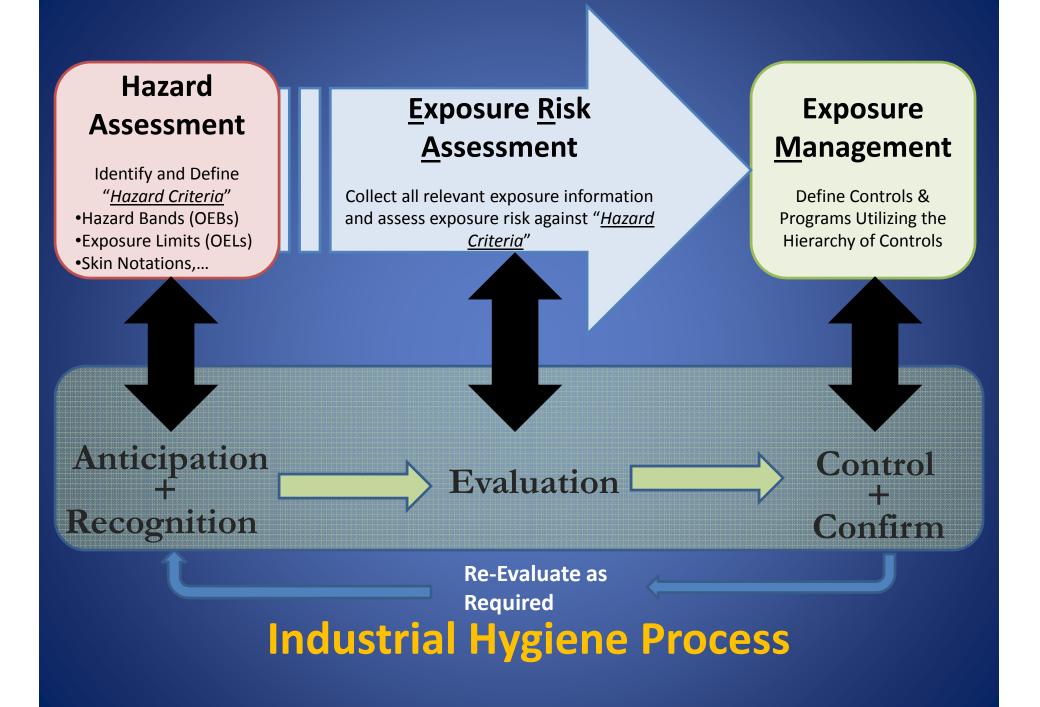
OEL Global Challenges

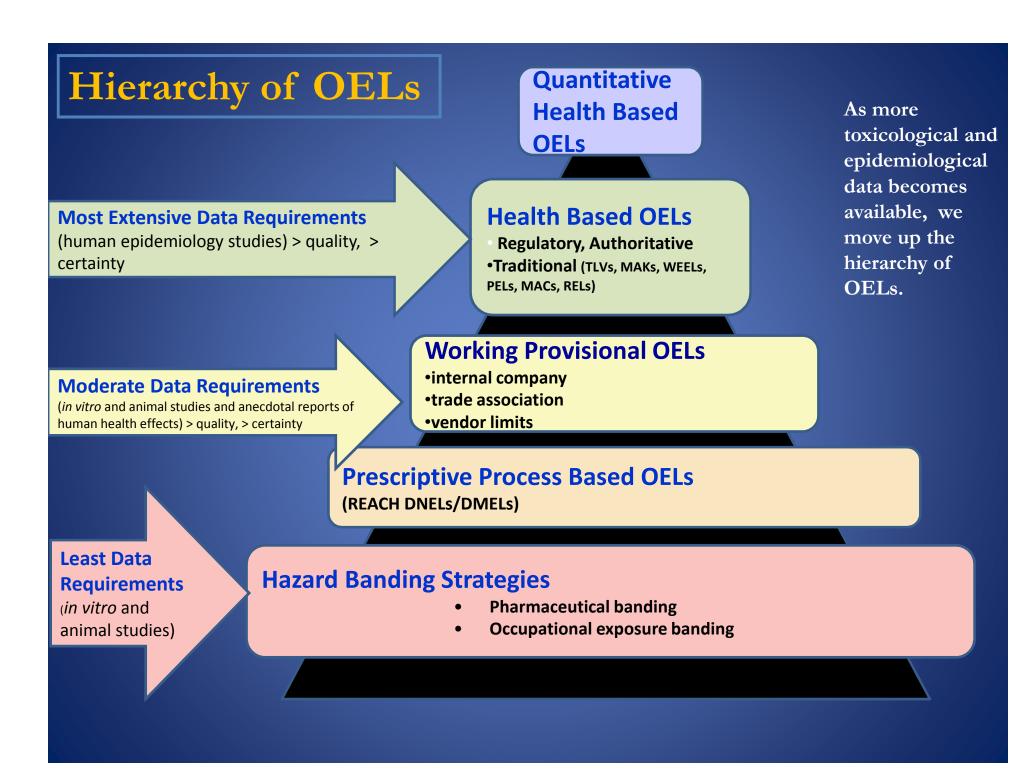
- Varied risk determination processes...varied protection levels
- Measurement method issues
- REACh--new playing field
- OELs not set at zero risk, but acceptable risk.

Critical Questions

- Do OELs have value today?
- Who should participate in OEL setting processes?
- Are there alternatives to traditional OELs?

Do OELs Have Value?


- Risk assessments
- Respirator selection
- Exposure priority setting
- Purchase decisions
- Control recommendations for product consumers


Who Should Participate?

- Neutral 3rd party?
- International body?
- Role of U.S. organizations, federal agencies or professional organizations?

Alternatives to Traditionally Derived OELs?

- Occupational Exposure Band
- Quantitative or Risk Based OELs
- Risk Based Environmental Limits

Polls—Learnings

- Today, Suite of OEL Setting Tools Exist Globally
- Most Chemicals Not Have OELs
- "Hierarchy of OEL" Processes May Bridge Risk Assessment and Management Gaps

AIHA-PEL Advisory Group Formed

- Initial discussions, 1.5 years ago
- Presently, convening to address OSHA's request for input on the upgrading of exposure limits.
- Deadline: April 8, 2015
- Expect opportunity for input.